A Scalable, Nonenzymatic Synthesis of Highly Stereopure Difunctional C_4 Secondary Methyl Linchpin Synthons

Shekar Mekala and Roger C. Hahn*

Department of Chemistry, Syracuse Univers[ity](#page-7-0), Syracuse, New York 13244-4100, United States

S Supporting Information

ABSTRACT: In response to the continuing widespread use of heterodifunctional C_4 secondary methyl building blocks in asymmetric synthesis, we have developed a mole-scale, two-step synthesis of a 1:1 mixture of the diastereomers of 3-bromo-2 methyl-1-propyl camphorsulfonate (casylate). One isomer (2S) has been crystallized to >99:1 dr in ∼25% yield. Equilibration of the mother liquor (enriched in $2R$) to a 1:1 mixture and recrystallization significantly raises the overall yield of 2S. Applications of 2S include chemoselective Grignard coupling, enabling the very short synthesis of highly stereopure long-chain natural products containing remote, methyl-bearing stereogenic centers [e.g., (R)-tuberculostearic acid], with complete control of configuration. Also, Ag-mediated, completely chemoselective Br displacement from 2S leads to a range of >99:1 er difunctional synthons. Both applications incorporate concurrent recovery of CasO. The *enantiomer* of $2s$ can be made from commercial $(1R)$ -10-CasOH.

ENTRODUCTION

Much effort has focused on preparation and use of chiral secondary methyl synthons. Among the most versatile of these are difunctional C_4 secondary methyl building blocks (Figure 1). Roche esters (methyl 3-hydroxy-2-methylpropionates; noncrystallizable) have been widely applied to the synthesis [o](#page-1-0)f biologically active compounds. There are many routes to their preparation,^{1−4} but none has achieved a greater ee than the products from microbe-mediated (formal) β-hydroxylation of isobutyric a[cid.](#page-7-0)⁵ Other commonly used C_4 chiral synthons are products of desymmetrization of very cheap 2-methyl-1,3 p[r](#page-7-0)opanediol or its diesters.¹ Many have sought convenient, scalable procedures to convert this diol to high er synthons. Trost et al.⁶ have discussed advant[ag](#page-7-0)es and disadvantages of enzymatic desymmetrizations and those mediated by nonenzymatic catal[y](#page-7-0)sts and chiral auxiliaries. Their chiral catalyst provided a desymmetrized 2-methyl-1,3-diol building block in 90% ee. However, large-scale preparation of $>99\%$ stereopure C_4 chiral building blocks of the type described here remains rare.^{7,8}

Our approach to difunctional C_4 secondary methyl building blocks was inspired by the observation that ma[ny](#page-7-0) alkyl camphorsulfonates $(casylates)^9$ are crystalline. Crystallization remains a superior and often essential avenue to chiral building blocks at a very high level of stereoisomeric purity. In the context of the difunctional C_4 framework, 3-X-2-methyl-1-propyl casylates¹⁰ (X = Cl/Br/I) were attractive because the two isomers are diastereomers, with different melting points and solubiliti[es](#page-7-0), making feasible separation by crystallization. Further, the nucleofugality of both halides and sulfonates could lead to chiral synthons conveniently usable for further elaboration. The bromalkyl casylate pair 2R and 2S, with a critical similarity in Br/ OCas nucleofugality (see below) and a 30° mp difference, 11 was chosen for further study. To obtain pure 2R and 2S for spectroscopic comparison and for seeding, comme[rc](#page-7-0)ially available (R) - and (S) -3-bromo-2-methyl-1-propanol were camphorsulfonated in standard fashion.

■ RESULTS AND DISCUSSION

The quest for a large-scale route to pure 2S started with the scalable, quaternary salt-catalyzed bromide−chloride exchange¹² of commercially available racemic 1-bromo-2-methyl-3-chloropropane and 1-bromobutane, to provide dibromide 1 (Scheme [1,](#page-7-0) eq 1). This exchange and all others herein are thermoneutral and

Received: November 6, 2014 Published: December 23, 2014

Figure 1. Some chiral C_4 difunctional building blocks.

Figure 2. Partial spectra of (a) ~1:1 2S/2R, (b) >99:1 2S/2R, and (c) 2R prepared from 2S.

scalable and need no solvent; the mixtures are homogeneous at exchange temperatures.

Me/EtOCass was made directly from camphorsulfonic acid (conveniently on a one-mole scale) by modification of the reported Arbuzov reaction of TsOH with trialkyl phosphites (Scheme 1, eq 2). 13 Running the reaction neat shortened the time to 2 h and re[mo](#page-7-0)ved the need for solvent handling.

In the conversion of dibromide 1 to a $2R/2S$ mixture by *n*-Bu4NBr-catalyzed Br−OCas exchange (Scheme 1, eq 3), methyl or ethyl casylate (Me/EtOCas) was used as the covalent casylate source. Transfer of casylate to the C_4 manifold was driven to completion by distilling out low-boiling Me/EtBr. Casylate displaces bromide more readily than do the arenesulfonates previously studied; 14 this superiority has not been quantitated.

The exchange (eq 3) was performed with 3 equiv of 1 (6 equiv of Br vs OCas), to minimize the percentage of dicasylate 3 at equilibrium. The equilibrated product mixture, as determined by the disappearance of Me/EtBr (which removes 1 equiv of Br), included excess 1, a 1:1 mixture of 2R and 2S, and 3; the mole ratio of total bromide to total casylate was approximately 5:1, thereby affording 1, $(2R+2S)$, and 3 in the approximate (statistically predicted for Br (x) and OCas (y) by $x^2 + 2xy +$ y^2) molar proportions 25:10:1. Unreacted dibromide 1 was distilled out at reduced pressure, to avoid increasing the proportion of dicasylate 3 by concurrent reversible CasO−Br exchange. The residue was taken up in $Et₂O$, and the catalyst, now $n-\text{Bu}_4\text{NOCas}_s$ (4, reusable for the same reaction), was separated by H_2O extraction. The $2R + 2S$ mixture was easily separated from 3 by silica gel chromatography, but could be left in the mixture with minimal effect on subsequent crystallization.

Seeding a MeOH solution of the 2R + 2S mixture (and 1−2% residual dibromide 1) with pure 2S afforded ∼85:15 dr 2S crystals; the mother liquor contained a 22:78 2S/2R mixture. Subsequent recrystallizations of the ∼85:15 dr material from $Et₂O$ (preferably via evaporative concentration vs controlled cooling) afforded \sim 25% of >99:1 dr 2S. In the range 95:5 2S/2R to 5:95 $2S/2R$, ratios were assayed by 400-MHz $^{\mathrm{I}}\mathrm{H}$ NMR, by a resolved pair of doublets (δ 3.025 and 3.015, respectively) produced by the diastereogenic geminal protons at C10 of the camphor moiety; the other pair of doublets $(\delta$ 3.63) is unresolved. Above 95:5 2S/2R, samples were assayed using the ddd's for the methylene protons adjacent to the OCas group. These are nearly identically centered in the two isomer spectra (δ 4.26), but the outside peaks for **2R** are baseline separated (δ 4.32 and 4.19) from all other peaks and discernible up to >99:1 dr. Spectroscopic comparisons of (a) ~1:1 2S/2R, (b) >99:1 dr 2S/ 2R, and (c) 2R prepared from 2S provide qualitative evidence of the high dr of $2S$ (Figure 2).¹⁵ The equally stereopure enantiomer of 2S (ent-2S) can be prepared via the same protocol, from commercially av[ail](#page-1-0)a[ble](#page-7-0) (1R)-10-camphorsulfonic acid.

To improve the 25% yield, we used the reversibility of casylate− bromide exchange to obtain additional pure 2S from 2R and/or dicasylate 3. A mixture of dibromide 1, 2S/2R mixture (\sim 25:75), 3, and catalyst, under exchange conditions (Scheme 2), equilibrated (to nearly 1:1 diastereomers) in 4 h.

Recrystallization as before gave an improved (∼50%) yield of 2S, based on the overall amount of Et/MeOCas. Repetitions of the equilibration−crystallization cycle in this manner can further increase the yield, but efficiency increases will depend on improved separation in the crystallization steps. Equilibration−

Scheme 2. Equilibration of 2R and 2S

crystallization differs from a "crystallization-induced asymmetric transformation", in that isomer interconversion and crystallization are not concurrent.¹⁶ The observed $2S/2R$ equilibration appears to be the first example of diastereomer interconversion mediated by concurrent [r](#page-7-0)eversible S_N^2 reactions at two nonstereogenic centers.

With >100 g of >99:1 dr 2S in hand, we turned to the critical question of chemoselectivity^{17,18} in using this chiral synthon. Reaction of 2S with a range of nucleophiles revealed a 9:1 or greater preference for bromi[de d](#page-7-0)isplacement, but direct OCas displacement by Nu[−], along with attack on OCas by in situ generated Br[−], appreciably degraded the chemical and optical purity of the products. A solution to this problem was found in the known halophilicity of Ag^+ and insolubility of AgBr, which enabled a nearly quantitative, completely selective silverassisted^{19,20} conversion of 2S to the nitrate ester 5R (Scheme $3,$ eq 4). Zinc in acetic acid^{21,22} selectively reduced $5R$ to alcohol

Scheme 3. Preparation o[f 5](#page-7-0)[R](#page-7-0), 6R, and 7a/7b

$$
\begin{array}{ccccccccc}\n\text{Br} & & & \text{OCas}_s & & \frac{\text{AgNO3},}{\text{MeCN},} & & \text{O}_2\text{NO} & & \text{OCas}_s & + \text{AgBr} & & (4) \\
\text{S99:1 dr} & & & & \text{gg}\n\end{array}
$$

$$
O_2NO \xrightarrow{\text{OCas}_s} \underbrace{\frac{Zn, HOAc}{0.20 \text{ °C}}}_{88 \cdot 92\%} \qquad HO \xrightarrow{\text{HO}{}} OCas_s
$$
\n
$$
(5)
$$

$$
HO \xrightarrow{\text{OCas}_s} \xrightarrow{\text{n-Bu}_4 N^+ X^+} \qquad HO \xrightarrow{\text{TC}} X + \text{n-Bu}_4 N^+ \text{Cas}_s O^-\quad (6)
$$
\n
$$
\xrightarrow{\text{GFR}} \xrightarrow{\text{G3-96\%}} \qquad \xleftarrow{\text{(599.1 e)}} X + \text{n-Bu}_4 N^+ \text{Cas}_s O^-\quad (6)
$$
\n
$$
\xrightarrow{\text{G28.1 e}} \qquad \qquad \xrightarrow{\
$$

6R (Scheme 3, eq 5), which was reacted with *n*-Bu₄NCl/Br to give haloalkanol 7a or 7b and n -Bu₄NOCas_s (Scheme 3, eq 6).

The clean, high-yielding conversion of 2S or ent-2S to 6R or ent-6R opens access to other >99:1 er difunctional building $blocks¹$ by chemoselective nucleophilic displacement of OCas from $6R/ent-6R$ by an array of nucleophiles (e.g., CN^- , $(RO₂Cl₂CH⁻, I⁻, N₃⁻, ArS⁻, ArSO₂⁻. RNH₂). However, widely$ used 7b and ent-7b (or their protected counterparts) and rarely used 7a and ent-7a are considered keys, because their formation by reaction of $6R/ent-6R$ with $n-Bu_4NBr/Cl$ simultaneously puts OCas most efficiently into reusable form. The building blocks mentioned above often have been prepared from the corresponding Roche esters and desymmetrization products of 2-methyl-1,3-diol, $\frac{1}{2}$ and $\frac{7b}{2}$ and ent-7b are commercially available, but very expensive. The present method provides another avenue to [t](#page-7-0)hese highly pure synthons, but differs from other methods in having the options of increasing the dr of 2S (or its enantiomer) by recrystallization, and conveniently tracking the diastereomeric purity of $2\mathcal{S}$ to a very high level by $^1\mathrm{H}$ NMR. The presence of the OCas, auxiliary in $5R$ and $6R$ similarly enables ¹H NMR confirmation of their very high dr's (isomer signals not detected). Alcohols 7/ent-7 (or protected derivatives) in which $X = CN$ are of particular interest as one form of a heterodifunctional isoprenoid building block.15,23,24 Also, many uses of alcohols 7/ent-7 in which $X = I$ have been reported.^{25,26}

The success of the 2S to 7 sequence mov[ed us to](#page-7-0) consider a second approach to increasing the yield of purified 2S. [After](#page-7-0) converting very cheap 2-methyl-1,3-diol to racemic 7b on a large scale,²⁷ we made a 1:1 mixture of $2S/2R$ by direct camphorsulfonation of the alcohol, thus avoiding the presence

of dibromide 1, Me/EtOCas, dicasylate 3, and n -Bu₄NOCas (4). We planned to crystallize this mixture as before and subject the anticipated \sim 25:75 2S/2R mother liquor to the sequence seen in Scheme 3, eqs 4−6. The established chemoselectivity of this sequence would deliver 25:75 7b/ent-7b, which could be camphor[su](#page-2-0)lfonated to $75:25$ $2S/2R$, thereby completing an overall inversion of 2R and 2S (Scheme 4).

However, crystallization of the 1:1 2S/2R mixture, containing no dibromide 1, dicasylate 3, or $n-Bu_4NOC$ as (4) gave a disappointing yield of 85:15 2S/2R crystals and a disappointing composition $(36:64 \text{ } 2S/2R)$ of the mother liquor (ML). ML crystallization (MeOH), seeding with 2S, gave crystals enriched in 2R (30:70 2S/2R) (see Experimental Section). Only after many more crystallizations was a 25% yield of >99:1 dr 2S obtained. This experience and previous crystallization experiments raised the suspicion that the 2S/2R system is susceptible to nucleation inhibition,²⁸ particularly of $2R$, by the presence of one or more impurities. When another 36:64 2S/2R solution in MeOH with 2 mol % a[dde](#page-7-0)d dibromide was seeded with 2S and cooled, crystallization was much slower, but gave 81:19 2S/2R material. The presence of "impurities" thus can account for the superior selectivity obtained in crystallization of 1:1 2S/2R mixtures obtained from Br−OCas exchange, which contain small amounts of dibromide. Although kinetic recrystallizations of $\langle 40:60 \, 2S/2R$ mixtures (seeding with $2R$) can afford $\langle 25:75 \rangle$ material suitable for inversion, the process is not efficient, making the inversion protocol less appealing. Also, repeated crystallizations from MeOH increase the appearance of substrate solvolysis products. On the other hand, recrystallizations of the initial 85:15 $2S/2R$ crystals proceed well in Et₂O, with no substrate degradation. We compared the merits and drawbacks of the two protocols. Catalyzed equilibration avoids use of HBr, CasCl, and $AgNO₃$ and a reduction step, but incurs some loss/ degradation of material and is limited to a 1:1 $2S/2R$ mixture in starting the recycle process. The inversion protocol can provide $>75:25$ 2S/2R to start the second crystallization sequence, but the recycle process, starting with the $AgNO₃$ reaction, is longer and lower yielding. Overall, optimized catalyzed equilibration is deemed the better protocol.

Recovery and reuse of expensive ingredients (Ag and OCas) in the conversion of $2S$ to 7 reduces cost and waste. In the Ag⁺assisted displacement of Br, 1.5 equiv of $AgNO₃$ were used; the excess was completely recovered. AgBr also was quantitatively recovered and reduced by Zn^0 to Ag⁰ (Scheme 5, eq 7).²⁹ The *n*- $Bu₄NOCas_s$ byproduct from conversion of 6R to 7, along with excess *n*-Bu₄NX, reacted with $Me₂SO₄$ to give MeX [\(d](#page-7-0)istilled out) and recyclable MeOCas_s (Scheme 5, eq 8).³⁰

A second chemoselective reaction of 2S/ent-2S, which does not require use of Ag⁺, also has been uncovered. In 2000, Cahiez et al.³¹ reported that bromoalkanes bearing other functional groups (Cl, ArSO₃, CN, OH, CO₂H, CO₂R, and CH₂COR), in the [pre](#page-7-0)sence of catalytic $Li₂CuCl₄$ and additive NMP, chemoselectively couple with organomagnesium reagents at the Br site in excellent yields [85−90% except for the bromoalkyl arenesulfonate (55%)] (eq 9). These results, in which arenesulfonates were

$$
\text{RMgCl} + \text{Br}(\text{CH}_2)_n \text{FG} \xrightarrow{\text{THF, NMP}} \text{R}(\text{CH}_2)_n \text{FG}
$$
\n
$$
\xrightarrow{\text{Lig_CuCl}_4 \text{ cat, rt}} \text{R}(\text{CH}_2)_n \text{FG}
$$
\n
$$
(9)
$$

less reactive than bromides, and ketones were tolerated, moved us to test the procedure with 2S. Indeed, coupling with $CH₃(CH₂)₆MgBr$ (1.1 equiv) proceeded cleanly to give alkyl casylate 8 in 81% yield (unoptimized). With a high-yield conversion of alkyl casylate to alkyl bromide/chloride (and concurrent initiation of casylate reuse) already in hand, this chemoselective reaction further enhances the versatility of 2S/ ent-2S as a chiral linchpin, 32 as shown in a five-step formal synthesis of (R) -tuberculostearic acid (11) (Scheme 6), a component of a major p[ho](#page-7-0)spholipid from M. tuberculosis, recently synthesized in five steps and 95:5 er.³³ Coupli[ng](#page-4-0) of bromide 9 (made from 8 in >95% yield) with the Grignard of

THP-protected 8-bromo-1-octanol gave ether 10, convertible in two known steps to 11.^{34,35} The demonstrated diastereomeric purity of 8 (${}^{1}{\rm H}$ NMR) can be can be taken as evidence for the enantiomeric purity of [11](#page-7-0).

This sequence demonstrates that $2S$ (or ent- $2S$) can be conveniently and efficiently used in a scalable, nonenzymatic linchpin process to place a methyl branch, with either configuration in >99:1 er, at any desired position in a longchain, sparsely functionalized hydrocarbon structure. Such compounds, many containing more than one methyl branch, abound in the world of insect (and other animal) communications. Because of the difficulty in determining the absolute configurations of such branches in biologically active substances, there is a need for simple ways to make all stereoisomers of these compounds.36−³⁸ Future work will explore those ways, as well as other uses of 7. 39,40

CONC[LUSION](#page-7-0)

A protocol has been developed that converts racemic 1-bromo-3 chloro-2-methylpropane or racemic 3-bromo-2-methyl-1-propanol to a difunctional C_4 chiral building block $(2S)$ in >99:1 dr (or greater if desired). A bromide−casylate exchange process has been developed that, because of its reversibility and the C_s symmetry of the C_4 skeleton, also provides a way to increase the yield of 2S at the expense of 2R. Chemoselective reactions of 2S can afford a range of >99:1 er difunctional chiral synthons and concurrently release the casylate auxiliary for reuse. Chemoselective organometallic coupling of the bromide in 2S has been shown to lead to highly efficient, enantioselective installation of remote, methyl-bearing secondary chiral centers in (e.g.) longchain hydrocarbons, again with concurrent release of casylate. The concept introduced here, of placing an easily installed and easily removed chiral sulfonate into a chiral/prochiral manifold to create separable/crystallizable diastereomers, will be pursued further. Efforts will continue to improve crystallization efficiency and to remove silver from the process.

EXPERIMENTAL SECTION

General Experimental Methods. Melting points were measured on a standard apparatus and are uncorrected. Analytical TLC was performed on POLYGRAM Sil $\mathrm{G}/\mathrm{UV}_{254}$ and visualized under a 254 nm UV lamp and/or stained using alkaline aq $KMnO₄$ or 2,4-DNP in aq H2SO4−EtOH. Column chromatography was performed with silica gel, 60 Å, 40–63 μ m. ¹H and ¹³C NMR spectra were recorded in CDCl₃ at

 $300/400$ MHz (1 H spectra) and 75/100 MHz (13 C spectra). Chemical shifts (δ , ppm) were referenced to the residual CHCl₃ signal (δ 7.26 ppm for $^1\mathrm{H}$ NMR and δ 77.00 ppm for $^{13}\mathrm{C}$ NMR). Each resonance was given with chemical shifts in ppm; multiplicities were given as s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of a doublet), m (multiplet), b (broad) if signals were overlapped. Signals are assigned where significant. Elemental analyses were obtained on an elemental analyzer with a thermal conductivity detector and 2 M GC column at 50 °C. High resolution mass spectra were obtained using an FTICR-MS instrtument. Optical rotations were measured in a given solvent on a dual wavelength (589/546 nm) automatic polarimeter with a 1 dm cell. Values are reported as specific rotations: $[\alpha]_D$, T, concn c in solvent (g/ 100 mL). Anhydrous THF was obtained from a solvent purification system. Acetone and CH_2Cl_2 were dried (24 h) over activated 4 Å molecular sieves. Unless otherwise indicated, all reactions were conducted in oven- (140 °C) or flame-dried glassware, using distilled and degassed solvents under a positive pressure of dry Ar with standard Schlenk techniques. Air-sensitive reagents were stored in a glovebox containing dry Ar. Stainless steel syringes or cannulas (oven-dried at 140 °C and cooled under Ar) were used to transfer air- and moisturesensitive liquids. Workups and purifications were carried out with reagent grade commercial solvents.

Warning: Many of these compounds are known or suspected to be toxic and/or carcinogenic.

1. Starting Materials for Bromide−Camphorsulfonate Exchange. 1.1. 1,3-Dibromo-2-methylpropane (1); Chloride−Bromide Exchange. A mixture of 1-bromo-3-chloro-2-methylpropane (686 g, 4.00 mol), 1-bromobutane (1654 g, 12 mol), and n -Bu₄NBr (26.8 g, 0.08) mol, 0.5 mol %) was heated in a 2 L, three-neck flask with a magnetic stirrer, immersion thermometer, and 30 cm fractionating column (glass helices). Distillation of 1-chlorobutane (1 atm) was continued for 23 h. The pot solution was further fractionated at ∼100 mm; bromobutane (bp 60 °C) was removed until the pot reached 82 °C. The washed, dried, and filtered residue was fractionally distilled [bp 33 $^{\circ}$ C @ 3 mm (same column)] to give >99% pure 1 (745 g, 86%). ^IH NMR and ¹³C NMR data matched literature values.⁴¹ ¹H NMR (400 MHz, CDCl₃): δ 3.53− 3.43 (m, 4H), 2.23–2.12 (m, 1H), 1.15 (d, J = 6.8 Hz, 3H); ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3)$: δ 37.6, 3[6.9](#page-7-0), and 17.8.

1.2. Ethyl (1S)-Camphor-10-sulfonate [Ethyl (1S) Casylate; EtOCas_s] (12). (1S)-Camphor-10-sulfonic acid (116 g, 0.50 mol, predried at 80 °C in vacuo) and triethyl phosphite (97 g, 0.58 mol) were swirled together until homogeneous (moderate exotherm) and then heated for 2 h at 50 °C. ^{1}H NMR analysis indicated 100% conversion to EtOCas_s (no CH₃ singlets for the acid at δ 1.06, 0.96). After kugelrohr removal of volatiles (76 °C/0.03 mmHg), the residue was crystallized (MeOH) to afford 126 g (96%) of 12, mp 42.1–42.7 °C $(lit^{42} \text{ mp } 46 \text{ °C})$. ¹H NMR (400 MHz, CDCl₃): δ 4.44–4.30 (m, 2H), 3.60 (d, J = 15.1 Hz, 1H), 2.98 (d, J = 15.1 Hz, 1H), 2.56–2.35 (m, 2H), 2.1[3 \(](#page-7-0)t, J = 4.6 Hz, 1H), 1.96 (d, J = 18.5 Hz, 1H), 1.66 (m, 1H), 1.45 (m,

1H), 1.41 (t, J = 7.0 Hz, 3H), 1.12 (s, 3H), 0.89 (s, 3H); ¹³C NMR (100 MHz, CDCl3): δ 214.5, 66.8, 57.9, 47.9, 46.7, 42.7, 42.5, 26.8, 24.82, 19.8, 19.7, 15.0.

1.3. Pure (2′R)- and (2′S)-1′-(3′-Bromo-2′-methylpropyl) (1S)-10- Camphorsulfonate (Casylates 2R and 2S). Each of the precursor bromoalkanols was converted via the same general procedure to the corresponding (1S)-casylate as described for 2S: To a 0 $^{\circ}$ C solution of (S)-3-bromo-2-methyl-1-propanol (306 mg, 2.0 mmol) in pyridine (0.5 mL) was added a solution of freshly crystallized (1S)-casyl chloride (525 mg, 2.10 mmol) in pyridine (0.5 mL); crystals (pyr·HCl) formed within 5 min. After overnight refrigeration, CH_2Cl_2 (10 mL) was added, and the solution was washed with H₂O (1×25 mL), 2 N HCl (1×25 mL), and 10% aq NaHCO₃ (1 \times 25 mL), dried (over MgSO₄), and filtered. The filtrate was stripped of solvent and heated to 90 °C at 1 mmHg to remove unreacted alcohol. The residue (573 mg, 78%), on addition of a few drops of MeOH, crystallized instantly to give pure 2S: mp 57−59 $^{\circ}$ C; ¹H NMR (300 MHz, CDCl₃): δ 4.30–4.21 (m, 2H), 3.62 (d, J = 15 Hz, 1H), 3.52–3.42 (m, 2H), 3.025 (d, J = 15.1 Hz, 1H), 2.53–2.35 (m, 2H), 2.32−2.24 (m, 1H), 2.13 (t, J = 6.0 Hz, 1H), 2.10−2.00 (m, 1H), 1.96 (d, J = 18.5 Hz, 1H), 1.73–1.63 (m, 1H), 1.49–1.42 (m, 1H), 1.12 $(s, 3H)$, 1.11 (d, J = 6.9 Hz, 3H), 0.89 (s, 3H). ¹³C NMR (75 MHz, CDCl3): δ 213.5, 71.1, 57.1, 47.2, 46.0, 41.9, 41.7, 35.0, 34.2, 26.1, 24.1, 18.9, 18.9, and 14.6. Anal. Calcd for C₁₄H₂₃BrO₄S: C, 45.78; H, 6.31. Found: C, 46.11; H, 6.31; $[\alpha]^{25}$ _D +39.4 (c 5.2, CHCl₃).

A MeOH solution of 2R crystallized on cooling (0 to -20 °C) and remained crystalline on cold filtration and rapid removal of residual solvent *in vacuo*: mp 27−31 °C; ¹H NMR (400 MHz, CDCl₃): δ 4.32− 4.19 (m, 2H), 3.62 (d, J = 15.1 Hz, 1H), 3.51−3.43 (m, 2H), 3.015 (d, J $= 15.1$ Hz, 1H), 2.53–2.35 (m, 2H), 2.32–2.24 (m, 1H), 2.13 (t, J = 6.0 Hz, 1H), 2.10−2.00 (m, 1H), 1.96 (d, J = 18.5 Hz, 1H), 1.73−1.65 (m, 1H), 1.49−1.42 (m, 1H), 1.11 (s, 3H), 1.10 (d, J = 6.7 Hz, 3H), 0.88 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 214.3, 71.8, 57.8, 48.0, 46.7, 42.6, 42.4, 35.9, 34.9, 26.8, 24.8, 19.7, 19.6, 15.3. Anal. Calcd for $C_{14}H_{23}BrO_4S$: C, 45.78; H, 6.31. Found: C, 45.91; H, 6.18; $[\alpha]_{D}^{26}$ +25.8 (c 4.85, CHCl₃).

1.4. Tetra-n-butylammonium Casylate (n-Bu₄N⁺Cas_sO⁻; 4). This salt, isolable from Br-OCas exchange reactions by $H₂O$ extraction, was prepared independently: n -Bu₄N⁺Br⁻ (3.22 g, 10.0 mmol), MeOCas_s $(2.71 \text{ g}, 11.0 \text{ mmol})$, and CH_2Cl_2 (a few drops) were mixed in a test tube and heated (oil bath, 77−80 °C) until gas evolution ceased (∼15 min). The mixture solidified on cooling; it was crushed in $Et₂O$, filtered, washed with Et₂O (2×15 mL), and dried to yield 4.62 g (97.5%) of 4 (crystals, mp 139−141 °C) containing no detectable MeOCass. ¹ H **NMR** (400 MHz, CDCl₃): (Many peak positions vary \pm 0.05 ppm in the presence of other compounds) δ 3.40 (d, J = 15.1 Hz, 1H), 3.26 (broad m, 8H), 2.91 (d, $J = 15.1$ Hz, 1H; diagnostic peak in bromide-casylate exchange mixtures), 2.71−2.62 (m, 1H), 2.32 (br dt, 1H), 2.03 (br t, 1H), 2.02−1.96 (m, 1H), 1.88 (d, 18.5 Hz, 1H), 1.70−1.60 (m, 9H), 1.44 (sext, 8H), 1.41−1.32 (m, 1H), 1.11 (s, 3H), 1.00 (t, 12H), 0.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 216.5, 58.3, 58.2, 47.6, 47.0, 42.6, 42.4, 26.7, 24.3, 23.6, 19.7, 19.5, 19.4, and 13.4. *n*-Bu₄N⁺Cas_sO[−] is very soluble in H_2O , MeOH, EtOH, CH₂Cl₂, and CHCl₃; it is insoluble in ether, and can be recrystallized from dry EtOAc.

2.1. Conversion of Dibromide 1 to a 1:1 Mixture of Casylates 2R and 2S, and Dicasylate 3. EtOCas_s (12; 260.4 g, 1.00 mol), dibromide 1 (648 g, 3.00 mol), and n-Bu₄N⁺Br[−] (12.9 g, 0.04 mol, 1 mol %) were mixed in a 1L, 3-neck flask fitted with a N_2 bubbler insert, thermometer, and a vigreux column with a distillation head. At 90 °C (oil bath heating, N_2 bubbling), the mixture became homogeneous. At 126−127 °C (pot), EtBr distilled out steadily. After 2.5 h, ¹H NMR analysis indicated >95% disappearance of $EtOCas_s$; the collected distillate contained no dibromide. Kugelrohr removal of 1 (451 g) (oven 54−62 °C/7.5 to 0.05 mmHg) left 348 g (94.5% of the calculated weight) of clear, pale tan oil consisting of 2R, 2S, 3, and n-Bu₄N⁺OCas_sO⁻ (4). The residue was taken up in sufficient Et₂O (\sim 300 mL) to make the solution less dense than H₂O, and extracted with H₂O (3×100 mL). Combined extracts were stripped of H₂O to give a near quantitative yield of 4. The $Et₂O$ phase was concentrated and taken up in Et₂O-hexanes (25:75 v/v). Silica gel flash column chromatography, eluting with $25:75$ and then $50:50$ Et₂O-hexanes,

cleanly separated (1:1 $2R + 2S$) from dicasylate 3. Crystallization of 3 afforded pure material, mp 89–91 °C; ¹H NMR δ 4.32 (dd, J = 5.0, 9.9 Hz, 1H), 4.27 (overlapping dd's, 2H), 4.21 (dd, J = 6.6, 9.9 Hz, 1H), 3.61 $(d, J = 15.1 \text{ Hz}, 1\text{H}), 3.04 (d, J = 15.1 \text{ Hz}, 1\text{H}), 1.10 (s, 3\text{H}), 1.09 (d, J =$ 8.0 Hz, 1H), 0.88 (s, 3H), + other camphor moiety signals. ¹³C NMR $(100$ MHz, CDCl₃): δ 214.3, 70.3, 70.2, 57.9, 48.1, 46.9, 46.8, 42.8, 42.5, 33.4, 26.9, 24.9, 19.7, 19.6, and 13.1. Anal. Calcd for C₂₄H₃₂O₈S₂: C, 55.57; H, 7.38. Found: C, 55.79; H, 7.07.

2.2. Equilibration of a 2R-Enriched Mixture of 2S and 2R. A 36:64 mixture of 2S/2R (77.85 g, 0.212 mol), dicasylate 3 (12.67 g, 0.0244 mol), and dibromide 1 (145 g, 0.67 mol) was heated with $n-$ Bu₄N⁺Cas_sO[−] (4, 28.1 g, 0.059 mol = ~3 mol % of total functional groups). After 4 h @120 °C (bath temp), the mixture (now 49:51 $2S/$ $2R$) was cooled, and Et₂O (300 mL) and H₂O (150 mL) were added. The organic layer was washed with H₂O (3×50 mL; combined with the first aq layer) and satd aq NaCl (50 mL) and dried over $Na₂SO₄$ -MgSO₄. Silica gel (15 g) was added, and the solution was pressure filtered through 1 in of SiO_2 . Et₂O was distilled off, followed by kugelrohr distillation at reduced pressure to give 139 g (97%) of nearly pure 1. The residue (82.5 g) was taken up in Et₂O−hexanes (50 mL 40:60) and chromatographed on silica gel. Elution with Et₂O−hexanes (25:75 v/v, then 100% $Et₂O$) in 21 500 mL fractions gave 73.4 g of colorless, \sim 1:1 2S + 2R (93% yield), followed by 9.0 g of dicasylate 3 (96% yield); overall recovery was 95%.

3. Crystallization of (1:1 $2R + 2S$). 3a. From a Mixture Containing Residual Dibromide. A 1:1 mixture of $2S/2R$ (166 g) containing residual C_4 dibromide was dissolved in MeOH (340 mL; \sim 2:1 v/w). The cooled mixture (6 °C) was seeded with pure 2S and left for 15 h and then cooled to -5 °C for 13 h. The mother liquor (ML) was removed; crystals were washed with cold $Et_2O(50 \text{ mL})$ and air-dried to give 68.6 g of an 87:13 $2S/2R$ mixture (¹H NMR analysis). Et₂O washings (44:56) weighed 6.0 g, and ML (25:75) weighed 91.3 g (calcd). The 87:13 crystals (68.6 g) were recrystallized from $Et₂O$ (135 mL) as before to give 55.2 g of ∼96:4 2S/2R and 13.4 g of 45:55 2S/2R ML. The cooled 25:75 ML deposited 7.9 g of 70:30 crystals, leaving 83.4 g of 22:78 ML, which was saved for re-equilibration. Combined 44:56 washings (6.0 g) and $45:55 \text{ ML}$ (13.4 g) were crystallized from MeOH (38 mL) as before to give 7.7 g of 73:27 crystals and 11.7 g of 24:76 ML (saved). Combined 70:30 crystals $(7.9 g)$ and 73:27 crystals $(7.7 g)$ were crystallized from $Et_2O(25 mL)$ to give 10.3 g of 86:14 crystals and 5.3 g of 32:68 ML (saved). Crystallization of 10.3 g of 86:14 crystals from Et₂O (20 mL) gave 8.8 g of 95:5 crystals and 1.5 g of 66:34 ML. Combined 96:4 crystals (55.2 g) and 95:5 crystals (8.8 g) were crystallized from Et₂O (125 mL) to give 55.3 g of 99.7:0.3 dr crystals (calcd) and 8.7 g of ∼80:20 ML. Access to a 400 MHz NMR instrument later enabled an improved $2S/2R$ dr assay, which showed the "99.7:0.3" dr to be closer to 99:1; one more crystallization (88% 2S recovery) gave 48.7 g (29%) of >99:1 dr 2S/2R.

3b. From a Mixture Containing No Dibromide 1, Me/EtOCas, or C_4 Dicasylate 3. A 0 °C 1:1 mixture of $2S/2R$ (168 g) in MeOH (340 mL) was seeded with pure 2S. After 15 h. the cold mixture was suction filtered, and the crystals were washed with cold Et_2O (50 mL) and airdried to give 47.5 g of 85:15 2S/2R. Mother liquor (120 g of 36:64 2S/ 2R) recrystallization as above (240 mL of MeOH, seeding with 2S) gave 48 g of 30:70 2S/2R crystals and 72 g of 42:58 ML. Many recrystallizations gave a 25% yield of >99:1 dr 2S.

4. Preparation of 5R, 6R, and 7a/7b. 4.1. $(2'R)-1'-(3'-Nitrato-2'-methylpropyl)$ (15)-10-Camphorsulfonate (5R).¹⁹ To a solution of bromocasylate $2S(8.0 g, 21.8 mmol)$ in dry $CH₃CN(10 mL)$ was added AgNO₃ (5.53 g, 32.7 mmol, 1.5 equiv). After the s[olut](#page-7-0)ion refluxed for 5 h and cooled, the solid (AgBr, 4.0 g, 99%) was filtered off and washed with Et₂O (3×20 mL) and H₂O (3×20 mL). The separated aqueous layer was extracted with $Et₂O$, and the combined organic layers were dried over anhyd MgSO₄ and filtered, with subsequent removal of solvent in *vacuo* to give $5R$ (7.5 g, 99%) as a colorless liquid. ¹H NMR (400 MHz, CDCl₃): δ 4.48–4.40 (m, 2H), 4.28–4.21 (m, 2H), 3.59 (d, J = 15.0 Hz, 1H), 3.00 (d, J = 15.0 Hz, 1H), 2.49–2.33 (m, 3H), 2.13 (t, J = 4.4 Hz, 1H), 2.11−2.00 (m, 1H), 1.96 (d, J = 18.5 Hz, 1H), 1.70−1.63 (m, 1H), $1.49-1.42$ (m, 1H), 1.11 (d, $J = 7.0$ Hz, $3H$), 1.10 (s, $3H$), 0.87 (s, $3H$). $1¹³C$ NMR (100 MHz, CDCl₃): δ 214.4, 73.4, 70.5, 57.9, 48.1, 46.9, 42.7,

42.5, 31.9, 26.9, 24.9, 19.7, 19.6, and 13.4. Anal. Calcd for $C_{14}H_{23}NO_7S$: C, 48.13; H, 6.63; N, 4.01. Found: C, 48.09; H, 6.87; N, 4.27; $[\alpha]_{D}^{24}$: +36.6 (c 5, CHCl₃).

4.2. (2'R)-1'-(3'-Hydroxy-2'-methylpropyl) (1S)-10-Camphor-
sulfonate (**6R**).²¹ To a vigorously stirred, 10 °C (ice bath) solution of nitratoalkyl casylate 5R (30.9 g, 88.4 mmol) and acetic acid (168 mL) was added Zn [pow](#page-7-0)der (17.4 g, 265 mmol, 1.6 equiv) at a rate to maintain the temperature. The stirred contents were allowed to warm to room temperature (8 h) and then diluted with EtOAc (250 mL), and the solid was filtered off. The two-phase filtrate was neutralized with saturated NaHCO₃, and the organic layer was washed with H₂O (3×150 mL) and saturated aq NaCl, dried over anhyd $Na₂SO₄$, and filtered; the solvent was then removed in vacuo. The residue was purified by silica gel flash chromatography (hexanes/Et₂O 3:1 v/v) to give hydroxyalkyl casylate 6R (23.8 g, 88%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 4.32−4.27 (m, 2H), 3.67−3.51 (m, 2H), 3.59 (d, J = 15.1 Hz, 1H), 2.99 $(d, J = 15.1 \text{ Hz}, 1\text{ H}), 2.51–2.32 \text{ (m, 2H)}, 2.11 \text{ (t, J = 2.4 Hz, 1H)}, 2.10–1.1 \text{ (t, J = 2.4 Hz, 1H)}$ 2.01 (m, 2H), 1.95 (d, J = 18.5 Hz, 1H), 1.95 (s, 1H (OH)), 1.7–1.65 $(m, 1H)$, 1.47–1.41 $(m, 1H)$, 1.10 $(s, 3H)$, 0.99 $(d, J = 7.0$ Hz, 3H), and 0.87 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 214.9, 71.9, 63.5, 58.0, 48.1, 46.6, 42.7, 42.5, 35.7, 26.8, 24.9, 19.7, 19.7, and 13.1. HRMS (ESI) Calcd for $C_{14}H_{24}O_5S$ ([M + Na]⁺): 327.123666. Found: 327.123670; $[\alpha]_{\text{D}}^{21}$ +4.0 (c 5.8, CHCl₃).

4.3. $(2R)$ -3-Chloro-2-methyl-1-propanol $(7a)$. To a 500 mL round bottom (rb) flask were added $6R$ (23.5 g, 77.2 mmol), dry n-Bu₄NCl (32.2 g, 116 mmol; 1.5 equiv), and dry DCE (50 mL). After 16 h at reflux, DCE was distilled out. $Et_2O(100 \text{ mL})$ was added to the cooled liquid and stirred for 15 min. The colorless solid precipitate (n- $Bu₄NOCas_s + excess *n*-Bu₄NCI)$ was filtered off, and the filtrate was concentrated in vacuo. Kugelrohr distillation (20 °C/2 mmHg) gave 7a $(8.3 \text{ g}, 93\%)$ as a colorless oil. ¹H and ¹³C NMR spectra matched literature data.⁴³ ¹H NMR (300 MHz, CDCl₃): δ 3.66–3.54 (m, 4H), 2.11−2.00 (m, 1H), 1.47 (br s, 1H), 1.02 (d, $J = 6.8$ Hz, 3H). ¹³C NMR (75 MHz, CD[Cl](#page-7-0)₃): δ 64.7, 47.6, 37.7, and 14.4; $[\alpha]_D^2$ ² –14.5 (c 0.65, CHCl₃) (lit.⁴³ $[\alpha]_D^{\text{RT}}$ –14.6 (c 4.13, EtOH).

4.4. (2R)-3-Bromo-2-methyl-1-propanol (7b). A mixture of $6R$ (0.5) g, 1.64 mm[ol\)](#page-7-0) and dry n-Bu4NBr (0.795 g, 2.46 mmol; 1.5 equiv) was heated until it was liquid (10 min). Acetone (2 mL) was added, and the mixture was refluxed for 5 h. Acetone was evaporated, and $Et₂O (10 mL)$ was added and stirred until a colorless solid formed (10 min). The ppt was filtered off, and the filtrate was concentrated in vacuo. The residue was chromatographed (silica gel) with $Et₂O/h$ exanes (3:1) to give 7b $(0.24 \text{ g}, 96\%)$ as a colorless oil. ¹H and ¹³C NMR spectra matched those of a commercial sample.⁴⁴ ¹H NMR (300 MHz, CDCl₃): δ 3.68–3.56 (m, 2H), 3.54−3.47 (m, 2H), 2.11−1.98 (m, 1H), 1.50 (br s, 1H), 1.05 $(d, J = 6.8 \text{ Hz}, 3\text{H})$. ¹³C [NM](#page-7-0)R (75 MHz, CDCl₃): δ 65.4, 37.6, 37.3, and 15.4; $[\alpha]_{\text{D}}^{21}$ –6.2 (c 2.01, CHCl₃) (lit.⁴⁴ $[\alpha]_{\text{D}}^{25}$ –6.6 (c 2, CHCl₃).

5. Recycling Procedures. 5.1. Recovery of Silver.²⁹ AgBr (88.5 g, 0.47 mol) and Zn powder (61.45 g, 0.9[4 m](#page-7-0)ol) were thoroughly mixed in a 1 L beaker. Contents were cooled (ice/water), and [1 M](#page-7-0) aq HCl (500 mL) was added slowly, with stirring. The wet solid was transferred onto a filter funnel, and the liquid was drained off. Then 5 M aq HCl (4×250) mL) was added portionwise with stirring, until bubbling ceased. The gray solid was washed thoroughly with H_2O and vacuum-dried to give pure Ag⁰ (∼50.2 g, ∼99%) as a gray-brown powder.

5.2. Recovery of Camphorsulfonate (as MeOCas,).³⁰ Freshly distilled Me₂SO₄ (10.0 mL, ~25% excess) was slowly dripped into n- $Bu₄N⁺Cas₈O⁻$ (4, 38.6 g, 81.5 mmol, in a 500 mL, three-n[eck](#page-7-0) rb flask containing a magnetic stirring bar and fitted with a gas (N_2) inlet, a pressure-equalizing dropping funnel, and a takeoff condenser. The solid salt dissolved in the path of the liquid, and the bottom material liquefied sufficiently to allow the stirring bar to move. The bath (oil) was heated to 55 °C; the solid gradually dissolved and became a colorless, nearly homogeneous solution as the bath temperature reached 63 °C. After 2 h @68 \degree C (bath), ¹H NMR analysis showed singlets for Me₂SO₄, MeOCas_s, and MeOSO₃⁻ at δ 3.98, 3.97, and 3.71, respectively; no signal was present for the OCas, ion. The colorless mixture remained liquid on cooling overnight. Et₂O (50 mL) and H_2O (100 mL) were added, and the whole was swirled until two clear phases appeared. NMR analysis of the Et₂O phase revealed mostly $MeOCas_s$ appreciable

 $Me₂SO₄$, and small amounts of n-Bu₄N⁺ (δ 1.02 t) and MeOSO₃⁻. Multiple Et₂O extractions of the aq phase afforded more $MeOCas_{s}$ and traces of the ionic impurities, but no $Me₂SO₄$. Aq NaHCO₃ (50 mL) was added to the initial Et_2O phase, and the mixture was stirred vigorously until Me₂SO₄ was gone. Combined Et₂O solutions were washed with H₂O and dried over MgSO₄. Filtration and solvent removal yielded 17.9 g (89%) of colorless crystals of MeOCas_s, mp 60–61 °C (lit⁴² mp 61 δ° C). ¹H NMR (400 MHz, CDCl₃): δ 3.95 (s, 3H), 3.60 (d, J = 15.1 Hz, 1H), 2.98 (d, J [=](#page-7-0) 15.1 Hz, 1H), 2.51–2.36 (m, 2H), 2.12 (t, J = 4.4 Hz, 1H), 2.10−2.01 (m, 1H), 1.95 (d, J = 18.5 Hz, 1H), 1.70−1.63 (m, 1H), 1.47−1.41 (m, 1H), 1.11 (s, 1H), and 0.88 (s, 1H). 13C NMR (100 MHz, CDCl₃): δ 214.5, 57.8, 56.1, 48.0, 46.0, 42.7, 42.5, 26.8, 24.8, 19.7, and 19.6.

6. Direct Application of 2S: Formal Synthesis of (R)- Tuberculostearic Acid (11). 6.1. (2′R)-2′-Methyldecyl (1S)-10- Camphorsulfonate (8)³¹. To a stirred solution of 2S (2.0 g, 5.44 mmol) and Li_2CuCl_4 [24 mg, 0.16 mmol (0.1 M in THF, 3 mol %)], THF (5 mL), and NMP (N-methyl-2-pyrrolidone, 2.2 g, 21.8 mmol) was added n-heptylmagnesium bromide (1.2 equiv of 1.3 M solution in THF, 6.53 mmol), dropwise at 20 °C. After being stirred for 1 h, the reaction mixture was cooled to −10 °C and quenched with 1 N HCl (25 mL). The aq layer was extracted with pentane $(3 \times 15 \text{ mL})$, and the combined organic layers were washed with 1 N HCl (15 mL) and H_2O $(3 \times 20 \text{ mL})$ and dried over anhyd MgSO₄. Filtration and concentration in vacuo gave a colorless oil, which was purified by silica gel column chromatography, eluting with ether/pentane (0:1 and 1:10) to give alkyl casylate $8(1.71 \text{ g}, 81\%)$ as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 4.17 (dd, J = 9.4, 5.6 Hz, 1H), 4.03 (dd, J = 9.4, 6.8 Hz, 1H), 3.60 (d, J = 15.0 Hz, 1H), 2.98 (d, J = 15.0 Hz, 1H), 2.55–2.36 (m, 2H), 2.12 (t, J = 4.4 Hz, 2H), 2.09−2.01 (m, 1H), 1.95 (d, J = 18.4 Hz, 1H), 1.89−1.81 (m, 1H), 1.68−1.61 (m, 1H), 1.47−1.25 (m, 16H), 1.12 (s, 3H), 0.97 (d, $J = 6.7$ Hz, 3H), and 0.89-0.86 (m, 6H). ¹H signals for the diastereomer of 11 (δ 4.17–4.03) were not detected. ¹³C NMR (100 MHz, CDCl₃): δ 214.5, 75.0, 57.9, 47.9, 46.5, 42.7, 42.5, 33.1, 32.8, 31.8, 29.7, 29.5, 29.2, 26.8, 26.6, 24.9, 22.6, 19.8, 19.7, 16.5, and 14.1. HRMS (ESI) Calcd for $C_{21}H_{38}O_4S$ ([M + Na]⁺): 409.2383. Found: 409.2382. $[\alpha]_{\text{D}}^{20}$ +30.85 (c 1.6, CHCl₃).

6.2. (R)-1-Bromo-2-methyldecane (9). A mixture of alkyl casylate 8 (1.50 g, 3.96 mmol) and $n\text{-}Bu_4\text{N}^+\text{Br}^-\left(1.91$ g, 5.94 mmol) was heated to 90 °C for 4 h (neat; liquefied). Et₂O (20 mL) was added to the cooled mixture; stirring (10 min) caused formation of a white precipitate. This was filtered off, the solid was washed with $Et₂O$ (10 mL), and the filtrate was concentrated in vacuo to give a colorless liquid, which was chromatographed on silica gel (pentane elution) to provide 9 (0.9 g, 98%) as a colorless liquid. ${}^{1}H$ and ${}^{13}C$ NMR spectral values matched literature data.⁴⁵ ¹H NMR (400 MHz, CDCl₃): δ 3.39 (dd, J = 9.8, 4.9 Hz, 1H), 3.32 (dd, J = 9.8, 6.2 Hz, 1H), 1.82−1.74 (m, 1H), 1.46−1.26 (m, 13H), 1.0 [\(d](#page-7-0), J = 6.6 Hz, 3H) and 0.88 (t, J = 6.6 Hz, 3H). ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3): \delta 41.6, 35.2, 34.9, 31.9, 29.7, 29.5, 29.3, 26.9, 22.7,$ 18.8, and 14.1. $[\alpha]_D^{20}$ –0.33 (c 0.9, CHCl₃) [lit.⁴⁶ $[\alpha]_D$ –0.31 (neat).

6.3. (R)-10-Methyloctadecyl-1-tetrahydropyranyl Ether $(10)^3$ The Grignard (8.0 mmol, 1.9 equiv by titra[tion](#page-7-0)) freshly prepared
from the THP ether of 8-bromo-1-octanol³⁴ was added dropwise, at [20](#page-7-0) $\rm ^{\circ}C$, to a stirred solution of bromoalkane 9 (1.0 g, 4.25 mmol), $\rm Li_2CuCl_4$ (1.27 mL of 0.1 M solution in THF, 3 mol [%](#page-7-0)), THF (5 mL), and NMP (2.05 mL, 21.3 mmol). After being stirred for 1 h more, the reaction mixture was cooled to 0-5 °C and quenched with ice cold aq NH₄Cl (25 mL). The separated aqueous layer was extracted with EtOAc (3×30) mL). Combined organic layers were washed with H_2O (3 \times 30 mL) and brine $(3 \times 25 \text{ mL})$, dried over anhyd MgSO₄, filtered, and concentrated in vacuo. The colorless residue was purified by silica gel column chromatography, eluting with Et₂O/hexanes ($0 \rightarrow 5 \rightarrow 10\%$ Et₂O) to give ether 10 $(1.46 \text{ g}, 93\%)$ as a colorless liquid. ¹H NMR (400 MHz, CDCl₃): δ 4.58–4.56 (m, 1H), 3.90–3.84 (m, 1H), 3.75–3.70 (m, 1H), 3.52−3.47 (m, 1H), 3.41−3.35 (m, 1H), 1.87−1.79 (m, 1H), 1.75−1.68 (m, 1H), 1.62−1.49 (m, 9H), 1.36−1.19 (m, 24H), 1.08−1.03 (m, 2H), and 0.89-0.82 (overlapped d and t, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 98.8, 67.7, 62.3, 37.1, 32.7, 31.9, 31.8, 30.8, 30.0, 30.0, 29.7, 29.7, 29.6, 29.6, 29.5, 29.4, 29.3, 29.2, 27.0, 26.2, 25.5, 22.7, 22.6, 19.7, 19.7, 14.1,

■ ASSOCIATED CONTENT

6 Supporting Information

 1 H and 13 C NMR spectra for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: rchahn@syr.edu.

Notes

The aut[hors declare no co](mailto:rchahn@syr.edu)mpeting financial interest.

■ ACKNOWLEDGMENTS

We thank the Hahn Gift Fund and the Syracuse University Department of Chemistry for financial support. We also thank Professors John Chisholm, Daniel Clark, Karin Ruhlandt, and Nancy Totah of this department for use of selected instrumentation. Dr. Frank Cook is thanked for some early experiments. This paper is dedicated to the memory of Professor Donald C. Dittmer.

■ REFERENCES

(1) Banfi, L.; Guanti, G. Synthesis 1993, 1029−1056.

(2) Núñez-Rico, J. L.; Etayo, P.; Fernández-Pérez, H.; Vidal-Ferran, A. Adv. Synth. Catal. 2012, 354, 3025−3035.

(3) Qiu, M.; Wang, D.-Y.; Hu, X.-P.; Huang, J.-D.; Yu, S. B.; Deng, J.; Duan, Z.-C.; Zheng, Z. Tetrahedron:Asymmetry 2009, 20, 210−213.

(4) Asymmetric bioreduction of methyl 2-hydroxymethylacrylate and derivatives has been reported, but appears not to be easily scaled up: Stueckler, C.; Winkler, C. K.; Bonnekessel, B.; Faber, K. Adv. Synth. Catal. 2010, 352, 2663−2666.

(5) Goodhue, C. T.; Schaeffer, J. R. Biotechnol. Bioeng. 1971, 203−214.

(6) Trost, B. M.; Malhotra, S.; Mino, T.; Rajapaksa, N. S. Chem.-Eur. J. 2008, 14, 7648−7657.

(7) Enzymatic synthesis of 5.9 g of >99% ee (R)-3-hydroxy-2 methylpropyl acetate has been reported: Bhuniya, R.; Nanda, S. Tetrahedron 2013, 69, 1153–1165. The % ee was based on an $\lceil \alpha \rceil_D$ comparison.

(8) Guduguntla, S.; Fañ anas-Mastral, M.; Feringa, B. ́ J. Org. Chem. 2013, 78, 8274−8280.

(9) McManus, S. P.; Roberts, F. E.; Lam, D. H.; Hovanes, B. J. Org. Chem. 1982, 47, 4386−4388. See also: Eliel, E. L.; Wilen, S. H. Stereochemistry of Organic Compounds; Wiley: New York, 1994; p 389.

(10) Most of this work was done with (1S)-10-camphorsulfonates; in identifying compounds by number, the camphor chirality descriptor sometimes is omitted to minimize confusion.

(11) 2R has mp 27−31 °C; 2S has mp 57−59 °C. Jacques, J.; Collet, A.; Wilen, S. H. Enantiomers, Racemates, and Resolutions; Wiley: New York, 1981; p 342.

(12) Hahn, R. C. J. Org. Chem. 1988, 53, 1331−1333.

(13) (a) Nitta, Y.; Arakawa, Y.; Ueyama, N. Chem. Pharm. Bull. 1986, 34, 2710−2718. (b) A similar, less thorough, independent study appeared one year later: Karaman, R.; Leader, H.; Goldblum, A.; Breuer, E. Chem. Ind. (London) 1987, 24, 857−858.

(14) Hahn, R. C.; Tompkins, J. J. Org. Chem. 1988, 53, 5783−5785.

(15) Compare (e.g.): Cao, J.; Perlmutter, P. Org. Lett. 2013, 15, 4327− 4329.

(16) Jacques, J.; Collet, A.; Wilen, S. H. Enantiomers, Racemates, and Resolutions; Wiley: New York, 1981; pp 369−377.

(17) Afagh, N. A.; Yudin, A. K. Angew. Chem., Int. Ed. 2010, 49, 262− 310 and references therein.

(18) Shenvi, R. A.; O'Malley, D. P.; Baran, P. S. Acc. Chem. Res. 2009, 42, 530−541.

(19) Ferris, A. F.; McLean, K. W.; Marks, I. G.; Emmons, W. D. J. Am. Chem. Soc. 1953, 75, 4078.

(20) Tertiary or benzylic bromides react with AgNO₃ in H₂O−acetone to give good yields of the corresponding alcohols: (a) Hayashi, T.; Hayashizaki, K.; Kiyoi, T.; Ito, Y. J. Am. Chem. Soc. 1988, 110, 8153− 8156. (b) Easton, C. J.; Hutton, C. A.; Wui Tan, E.; Tiekink, E. R. T. Tetrahedron Lett. 1990, 31, 7059−7062. With 2S, in our hands, this method gave a mixture of alcohol and nitrate.

(21) Dewar, J.; Fort, G. J. Chem. Soc. 1944, 496−499.

(22) High-yield catalytic hydrogenolysis of nitrate esters also has been reported: Kuhn, L. P. J. Am. Chem. Soc. 1946, 68, 1761−1762.

(23) Khumsubdee, S.; Zhou, H.; Burgess, K. J. Org. Chem. 2013, 78, 11948−11955.

(24) Marshall, J. A.; Andersen, M. W. J. Org. Chem. 1992, 57, 5851− 5856.

(25) Liang, B.; Novak, T.; Tan, Z.; Negishi, E. J. Am. Chem. Soc. 2006, 128, 2770−2771.

(26) Xu, S.; Lee, C.-T.; Wang, G.; Negishi, E. Chem.-Asian J. 2013, 8, 1829−1835.

(27) Chong, J. M.; Heuft, M. A.; Rabbat, P. J. Org. Chem. 2000, 65, 5837−5838.

(28) Leeman, M.; Brasile, G.; Gelens, E.; Vries, T.; Kaptein, B.; Kellogg, R. Angew. Chem., Int. Ed. 2008, 47, 1287−1290.

(29) Cucciolito, M. E.; Flores, G.; Vitagliano, A. Organometallics 2004, 23, 15−17.

(30) Brändström, A. Preparative Ion Pair Extraction, an Introduction to Theory and Practice, 2nd ed.; Apotekarsocieteten/Hässle Läkemedel: ̈ Stockholm, 1976, Ch. VIII, pp 143−144.

(31) Cahiez, G.; Chaboche, C.; Jézéquel, M. Tetrahedron 2000, 56, 2733−2737.

(32) Chen, M. Z.; Gutierrez, O.; Smith, A. B., III. Angew. Chem., Int. Ed. 2014, 53, 1279−1282.

(33) Fodran, P.; Minnaard, A. J. Org. Biomol. Chem. 2013, 11, 6919− 6928.

(34) Liu, X.; Stocker, B. L.; Seeberger, P. H. J. Am. Chem. Soc. 2006, 128, 3638−3648.

(35) Dyer, B. S.; Jones, J. D.; Ainge, G. D.; Denis, M.; Larsen, D. S.; Painter, G. F. J. Org. Chem. 2007, 72, 3282−3288.

(36) Bello, J. E.; Millar, J. C. Tetrahedron: Asymmetry 2013, 24, 822− 826.

(37) Svensson, G. P.; Gündüz, E. A.; Sjöberg, N.; Hedenström, E.; Lassance, J.-M.; Wang, H.-L.; Löfstedt, C.; Anderbrant, O. J. Chem. Ecol. 2014, 40, 387−395.

(38) Wyatt, T. D. J. Comp. Physiol. A 2010, 196, 685−700.

(39) Cahiez, G.; Alexis, A.; Normant, J. F. Tetrahedron Lett. 1978, 19, 3013−3014.

(40) Najera, C.; Yus, M.; Seebach, D. Helv. Chim. Acta 1984, 67, 289− 300.

(41) Westerbeek, A.; van Leeuwen, J. G. E.; Szymański, W.; Feringa, B. L.; Janssen, D. B. Tetrahedron 2012, 68, 7645−7650.

(42) Patterson, T. S.; Loudon, J. D. J. Chem. Soc. 1932, 1725−1744.

(43) Gaucher, A.; Ollivier, J.; Marguerite, J.; Paugam, R.; Salaü n, J. Can. J. Chem. 1994, 72, 1312−1327.

(44) Aldrich Handbook of Fine Chemicals 2012−2014; p 500.

(45) Maki, E. C.; Rodstein, J.; Millar, J. C.; Barbour, K. S.; Hanks, L. M.; Barbour, J. D. J. Chem. Ecol. 2011, 37, 714−716.

(46) Högberg, H.-E.; Hedenström, E.; Wassgren, A.-B.; Hjalmarsson, M.; Bergström, G.; Löfqvist, J.; Norin, T. Tetrahedron 1990, 46, 3007− 3018.

■ NOTE ADDED AFTER ASAP PUBLICATION

Scheme 4 was corrected on January 15, 2015.